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Abstract. The alternating direction method solves large scale variational inequality problems with
linear constraints via solving a series of small scale variational inequality problems with simple con-
straints. The algorithm is attractive if the subproblems can be solved efficiently and exactly. However,
the subproblem is itself variational inequality problem, which is structurally also difficult to solve. In
this paper, we develop a new decomposition algorithm, which, at each iteration, just solves a system
of well-conditioned linear equations and performs a line search. We allow to solve the subproblem
approximately and the accuracy criterion is the constructive one developed recently by Solodov and
Svaiter. Under mild assumptions on the problem’s data, the algorithm is proved to converge globally.
Some preliminary computational results are also reported to illustrate the efficiency of the algorithm.
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1. Introduction

Consider the variational inequality problem, denoted by VI(f �S), which is to find
a vector x∗ ∈S, such that

f �x∗���z−x∗��0� ∀z∈S�

where S⊂Rn is a nonempty closed convex subset of Rn and f is a continuous,
monotonemapping fromRn into itself. This problem has several important applica-
tions in many fields, such as network economics, traffic assignment, game theoretic
problems, etc. [1, 3, 24]. There are a substantial number of iterative methods in-
cluding the projection method and its variant forms [1, 18–20], the linearized
Jacobi method [17], Newton-type methods [17, 23, 27], etc.
In this paper, we will focus our attention on VI(f �S) where S has the following

structure:

S=S1=
x∈Rn �Bx=b�x�0� (1)
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or

S=S2=
x∈Rn �Bx�b�x�0� (2)

where B∈Rm×n is a given matrix and b∈Rm is a given vector. Though it is
a special case of VI(f �S), this problem finds many important applications in the
fields such as traffic equilibrium and network equilibrium problems.
A typical method for solving the primal problem VI(f �S) with structure (1)

is the following decomposition algorithm proposed by Gabay [8] and Gabay and
Mercier [9], which is called alternating direction method:

Given �xk�yk�∈Rn
+×Rm, find xk+1�0, such that

�x
′ −xk+1��
f �xk+1�−B��yk−�Bxk+1−b���0� ∀x′

�0� (3)

then update y via

yk+1=yk−�Bxk+1−b��

Note that this algorithm can also be used to solve the variational inequality prob-
lem with S=S2 by introducing a slack vector to the linear inequality constraint to
transform S2 to the same form as S1,

S2=
�x�z�∈Rn×Rm �Bx−z=b�z�0�

However, this will increase the dimension of the subproblem (3) from n to n+m.
Then, for solving the variational inequality problem VI(f �S) with S=S2,

another decomposition method was proposed [7, 8, 9, 10], which is called method
of multiplier:

Given �xk�zk�yk�∈Rn
+×Rm

+×Rm, find xk+1�0, such that

�x
′ −xk+1��
f �xk+1�−B��yk−�Bxk+1−zk−b���0� ∀x′

�0� (4)

then update z via

zk+1=max
0�Bxk+1−yk−b�

and update y via

yk+1=yk−�Bxk+1−zk−b��

These decompositions methods are attractive for large scale problems, since
they decompose the original problems into a series of subproblems with lower
scale. However, note that both (3) and (4) are still variational inequality problems,
which are structurally difficult to solve.
Recently, Wang, Yang and He [28] proposed a new decomposition algorithm for

solving VI(f �S) with S=S1 or S=S2 uniformly. At each iteration k, for a given
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(or obtained) point xk, they first solve the following linear variational inequality
problem to get yk

�y
′ −yk��
�Axk−a�−A�f�xk�−A�yk��0� ∀y′ ∈Y � (5)

and then solve the following system of nonlinear equations to get the next iteration
xk+1

xk+1+f �xk+1�=xk+f �xk�−��f �xk�−A�yk�� (6)

where �∈�0�2� is a given constant,

A=
(
B
I

)
� a=

(
b
0

)
�

and Y is a set in Rm+n with

Y =YI×YII � YI ⊂Rm� and YII =Rn
+�

YI =Rm when S=S1 and YI =Rm
+ when S=S2. Their algorithm avoids solving

the variational inequality problems (3) or (4), which are structurally more difficult
to solve than (6). Instead, they solve the linear variational inequality problem (5)
and a system of nonlinear equations (6). Though the latter problem is structur-
ally easier to solve than the variational inequality problems (3) and (4), the linear
variational problem is sometimes time consuming. Moreover, in [28], the authors
proved that 
xk converges to x∗ and when the matrix A has full row rank, 
yk
converges to y∗, where x∗ is a solution of VI(f �S) and y∗ is the corresponding
Lagrange multiplier to the linear constraints Bx=b (Bx�b) and the nonnegative
constraints. From the structure of A, we can see that A has full row rank only for
the special case that B=0 and VI(f �S) reduces to the nonlinear complementarity
problem of finding x∈Rn, such that

x�0� f �x��0� x�f �x�=0�

More recently, Han [16] also considered the variational inequality problem
with (1) and (2) uniformly and proposed the following proximal decomposition
algorithm:

Given the current iteration �xk�yk�∈Rn×Y , solve the following system of
nonlinear equations

ck�f �·�−A�yk�+�·−xk�=rk� (7)

such that

rk��xk− x̄k� (8)

Then, set

ȳk=PY �y
k−�Ax̄k−a�� (9)
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and

g�uk�=g�xk�yk�=
(
f �x̄k�−A�ȳk

yk− ȳk

)
�

Finally compute �k by

�k=g�uk���uk− ūk�/g�uk�2� (10)

and get the new iteration uk+1=�xk+1�yk+1� via

uk+1=uk−�kg�u
k�� (11)

Note that at each iteration, this algorithm needs only to solve a system of well
conditioned nonlinear equations with the same structure as (6) and perform a pro-
jection to the simple set Y . Furthermore, it allows to solve the system of equations
approximately and adopts a constructive accuracy criterion (8) developed recently
by Solodov and Svaiter [26], which is more constructive than the classical one
assuming the summability or the square summability of the sequence of the error
tolerance parameters [25, 21, 15]. The computational results reported there are
encouraging.
Inspired by these, this paper develops a new decomposition algorithm for solv-

ing variational inequality problems VI(f �S) with S = S1 or S = S2. At each
iteration, instead of solving the structurally difficult problems (3) or (4), or the
system of nonlinear equations (7), this algorithm just first solves a system of linear
equations with respect to the variable x. Then, it performs an Armijo-type line
search to get a suitable stepsize. It also allows to solve the equations approximately,
and adopts the same accuracy criterion, which makes the algorithm more practical.
We prove that under mild assumptions that the underlying mapping f is continuous
and monotone and the solutions set is nonempty, the sequence generated by the
algorithm converges to a solution globally.
The remainder of the paper is organized as follows. In the next section, we sum-

marize some basic definitions and properties to be used in this paper. In Section 3,
the new decomposition algorithm is described formally and its global convergence
is proved in Section 4 under mild condition that the underlying mapping f is
continuous and monotone. In Section 5, we report some preliminary computational
results of the proposed method, and Section 6 gives some concluding remarks.

2. Preliminaries

In this section, we summarize some basic concepts and their properties that will be
useful in the sequent sections.
First, we denote x = √

x�x as the Euclidean norm. Let K be a nonempty
closed convex subset of Rn and let PK�·� denote the projection mapping from Rn

onto K. The following well known properties of the projection operator will be
used bellow.
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LEMMA 2.1. Let K be a nonempty closed convex subset of Rn. For any x�y∈Rn

and any z∈K, the following properties hold.

1. �x−PK�x��
��z−PK�x���0�

2. PK�x�−PK�y�2�x−y2−PK�x�−x+y−PK�y�2� �

For any positive real number " and x∈K, let e�x�"� denote the residue
function associated with the mapping f , i.e.,

e�x�"�=x−PK�x−"f�x���

LEMMA 2.2. x∗ is a solution of the VI�f �K� if and only if e�x∗�"�=0 for any
given positive real number ".

Proof. It is clear that the solutions set of VI�f �K� is invariant under multiplic-
ation f by some positive scalar ". According to ([2], p. 267) (See also [5]), it is
equivalent to e�x∗�"�=0. �

Clearly, to solve VI�f �K� is equivalent to finding a zero point of the residue
function e�x�"� for any given positive ". The lemma also provides an important
stopping criterion for designing a solution method.
We need the following definitions concerning the functions.

DEFINITION 2.3.

a). A mapping f $Rn→Rn is said to be monotone, if

�x−y���f �x�−f �y���0� ∀x�y∈Rn�

b). A mapping f $Rn→Rn is said to be strongly monotone with modulus
�>0, if

�x−y���f �x�−f �y����x−y2� ∀x�y∈Rn�

If f is continuously differentiable and strongly monotone, then &f�x� is uni-
formly positive definite for all x∈Rn.
In the remainder of this paper, we always suppose that the underlying map-

ping f of the variational inequality problem under consideration is continuous and
monotone.

3. The Decomposition Algorithm

Note that, by introducing a Lagrange multiplier y to the linear constraint and the
nonnegative constraint, we can transform VI(f �S1) and VI(f �S2) to the uniform
description of finding a vector u∗ ∈', such that

F�u∗���u−u∗��0� ∀u∈'� (12)
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where

u=
(
x
y

)
� F �u�=F�x�y�=

(
f �x�−A�y

Ax−a

)
� '=Rn×Y � (13)

and

A=
(
B
I

)
� a=

(
b
0

)
�

Y is a set in Rm+n with Y =YI×YII , YI ⊂Rm and YII =Rn
+. The only difference

is YI =Rm if S=S1 and YI =Rm
+ if S=S2. In this paper, we focus our attention

to the structured variational inequality problem (12)–(13), denoted by VI(F�').
We assume that the solution set of VI(F�') is nonempty.
We are now in the position to describe our method formally.

ALGORITHM 3.1. An inexact decomposition algorithm.

Step 0. Choose an arbitrary initial point u0=�x0�y0�∈Rn×Y , and parameters
)>0� � ∈�0�1�, "∈�0�1�, *∈�0�1�, +̄∈ �A2/�*�1−������. Set
k $=0.

Step 1. Choose +k∈ �A2/�*�1−����+̄�, and a positive semidefinite matrix
Gk∈Rn×n, then find x̃k∈Rn by solving the following system of linear
equations

f �xk�−A�yk+�Gk++kI��x̃
k−xk�=rk� (14)

such that

rk��xk− x̃k� (15)

Step 2. Find x̄k=xk+tk�x̃
k−xk�, such that

�f �x̄k�−A�yk���xk− x̃k��*�1−��+kxk− x̃k2� (16)

where tk="mk andmk is the smallest nonnegative integer such that (16) is
satisfied.

Step 3. Set

ȳk=PY �y
k−�Ax̄k−a��� (17)

If
xk− x̄k+yk− ȳk�)�

then stop. Otherwise, go to Step 4.
Step 4. Set

g�uk�=g�xk�yk�=
(
f �x̄k�−A�ȳk

yk− ȳk

)
� (18)

Then compute �k by

�k=g�uk���uk− ūk�/g�uk�2� (19)
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Step 5. Compute uk+1=�xk+1�yk+1� via

uk+1=uk−�kg�u
k�� (20)

Set k $=k+1 and goto Step 1.

Note that solving (14) is equivalent to solving a system of linear equations with
the following structure

�Gk++kI�x=dk�

Since Gk is positive semidefinite and +k�A2/�*�1−���>0, the coefficient
matrix of the above system is positive definite. For solving this system of linear
equations, there are many iterative methods, see for example, [4, 6, 11]. Further-
more,we allow to solve it approximatelywith accuracy criterion (15),which ismore
constructive than the classical one assuming summability or square summability of
the sequence of error tolerance, see [25, 15].
Note also that the system of linear equations is much easier to solve than vari-

ational inequality problems (3) and (4), and the system of nonlinear equations (6)
and (7).
If xk= x̃k, then it follows from (15) that rk=0� On the same time, if yk= ȳk,

then from (14) and (17), we have

f �xk�−A�yk=0�

and
yk=PY �y

k−�Axk−a���

Then, it follows from Lemma 2.2 that �xk�yk� is a solution of VI(F�'). On the
other hand, if �xk�yk� is a solution of VI(F�'), then we have xk= x̃k, yk= ȳk.
That is

�xk�yk� is a solution of VI(F�')⇔xk− x̄k=yk− ȳk=0�

We thus can use xk− x̄k+yk− ȳk as a measure, which measures how much
that �xk�yk� fails to be a solution of VI(F�'). The stopping criterion in Step 3 is
thus reasonable.
The following lemma shows that the whole algorithm is well defined.

LEMMA 3.1. Algorithm 3.1 is well defined

Proof. To show that Algorithm 3.1 is well-defined, we need only to show that the
linesearch procedure is well-defined. If x̃k=xk and yk= ȳk, then the algorithm
terminates with uk=�x̃k�yk� a solution of VI(F�'). Therefore, from now on, we
assume that x̃k−xk>0. Since x̃k is a solution of (14), it follows that.

�f �xk�−A�yk���xk− x̃k�

=�xk− x̃k���Gk++kI��x
k− x̃k�+�xk− x̃k��rk

�+kxk− x̃k2−xk− x̃krk
��1−��+kxk− x̃k2� (21)
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where the first inequality follows from the the Cauchy-Schwarz inequality and the
last one follows from (15). Suppose that for some k�0, (16) is not satisfied for any
m, i.e.,

�f �xk+"m�x̃k−xk��−A�yk���xk− x̃k�<*�1−��+kxk− x̃k2� ∀m�

Since xk+"m�x̃k−xk�→xk as m→�, and f �·� is continuous, taking limit as
m→�, we obtain

�f �xk�−A�yk���xk− x̃k��*�1−��+kxk− x̃k2�
This together with (21) means that xk− x̃k=0 since *∈�0�1�, which contradicts
the assumption that xk− x̃k>0. Thus, (16) always terminates with a positive
stepsize tk. This complements the proof. �

4. Global Convergence

In this section, we analyze the global convergence of the proposed algorithm under
the mild conditions that the underlying mapping f is continuous and monotone
and the solution set of VI(F�') (12)–(13), denoted by'∗, is nonempty.
If the algorithm stops at some iterative k>0, then �xk�yk� is an approximate

solution of VI(F�'). We thus assume throughout this section that )=0 and the
algorithm generates an infinite sequence 
uk=
�xk�yk�.
We now begin our analysis with two lemmas.

LEMMA 4.1. If uk=�xk�yk� is not a solution of VI(F�'), then −g�uk� is a
descent direction of the merit function 1

2u−u∗2, where u∗ ∈'∗ is an arbitrary
solution of VI(F�').

Proof. First, note that Y is a nonempty closed convex subset of Rm+n. Let u∗=
�x∗�y∗�∈'∗ be an arbitrary solution of VI(F�'). Then, from Lemma 2.1


yk−�Ax̄k−a�−PY �y
k−�Ax̄k−a���
PY �y

k−�Ax̄k−a��−y∗�0�

Since u∗ is a solution of VI(F�') and PY �·�∈Y , from (12), it follows that

�Ax∗−a���PY �y
k−�Ax̄k−a��−y∗��0�

Adding the above two inequalities,


yk− ȳk−A�x̄k−x∗��
�yk−y∗�−�yk− ȳk��0� (22)

which is equivalent to the inequality

�xk−x∗���A��yk− ȳk��+�yk−y∗���yk− ȳk�

��yk−y∗���Ax̄k−Ax∗�+yk− ȳk2−�Ax̄k−Axk���yk− ȳk�� (23)
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Since u∗ is a solution of VI(F�'), we obtain that

f �x∗�=A�y∗�

From the monotonicity of f ,

�f �x̄k�−A�yk���x̄k−x∗�

=��f �x̄k�−f �x∗��−A��yk−y∗����x̄k−x∗�

�−�yk−y∗���Ax̄k−Ax∗�� (24)

Adding (23) and (24),

�xk−x∗���f �x̄k�−A�ȳk�+�yk−y∗���yk− ȳk�

��xk− x̄k���f �x̄k�−A�yk�+yk− ȳk2−�Ax̄k−Axk���yk− ȳk�

�*�1−��+ktkxk− x̃k2+yk− ȳk2− 1
2
t2kA2xk− x̃k2− 1

2
yk− ȳk2

�
A2
2

tkxk− x̃k2+ 1
2
yk− ȳk2� (25)

where the second inequality follows from (16) and the Cauchy-Schwarz inequality,
and the last one follows from the choice of +k and the fact that tk∈�0�1�. This
completes the proof. �

The following lemma paves the way to prove the global convergence of the
proposed algorithm.

LEMMA 4.2. Suppose that f is continuous and monotone, the solution set '∗ of
VI(F�') is nonempty. Then

1. The generated sequence 
uk=
�xk�yk� is bounded.
2. The sequence 
ūk=
�x̄k�ȳk� is bounded.

Proof. It follows from (25) that

g�uk���uk− ūk�

=�f �x̄k�−A�yk���xk− x̄k�+yk− ȳk2−�Ax̄k−Axk���yk− ȳk�

�
A2
2

tkxk− x̃k2+ 1
2
yk− ȳk2�
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Since f �x∗�=A�y∗� it follows therefore,

g�uk���ūk−u∗�

=
(
f �x̄k�−A�ȳk

yk− ȳk

)�(
x̄k−x∗

ȳk−y∗

)

=
(
�f �x̄k�−f �x∗��−A��ȳk−y∗�

yk− ȳk

)�(
x̄k−x∗

ȳk−y∗

)

=�x̄k−x∗���f �x̄k�−f �x∗��+�yk− ȳk−�Ax̄k−Ax∗����ȳk−y∗�
��yk− ȳk−�Ax̄k−Ax∗����ȳk−y∗�
�0�

where the first inequality follows from the monotonicity of f and the last one
follows from (22). We thus have that

g�uk���uk−u∗� = g�uk���ūk−u∗�+g�uk���uk− ūk�

� g�uk���uk− ūk��

Therefore,

xk+1−x∗2+yk+1−y∗2
�xk−x∗2+yk−y∗2−2�kg�u

k���uk− ūk�+�2
kg�uk�2

=xk−x∗2+yk−y∗2−�kg�u
k���uk− ūk�

=xk−x∗2+yk−y∗2− �g�uk���uk− ūk��2

g�uk�2 � (26)

From the above inequality, we have

xk+1−x∗2+yk+1−y∗2� ···�x0−x∗2+y0−y∗2�
Thus, the sequence 
uk=
�xk�yk� is bounded.
It follows from (14) that

�Gk++kI��x̃
k−xk�−rk=f �xk�−A�yk�

Since Gk is a positive semidefinite matrix and +k is bounded away from zero, the
sequence 
�xk�yk� is bounded and f is continuous, from (15) 
x̃k is bounded.
Therefore, 
x̄k is bounded and from (17), 
ȳk is also bounded. �

We are now ready to prove the main result in this section.

THEOREM 4.3. Let the assumptions in Lemma 4.2 hold. Then the whole sequence

uk generated by Algorithm 3.1 converges to a solution of VI(F�') globally.

Proof. Lemma 4.2 shows that 
uk=
�xk�yk� is bounded. It thus has at least
one cluster point. Let ũ=�x̃�ỹ� be a cluster point of 
uk=
�xk�yk� and

ukj =
�xkj �ykj � be the corresponding subsequence converging to ũ. Since 
uk
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is bounded, from the continuity of g, there exists a positive constant M , such that
g�uk��M , for all k�0� Then, from (26)

�∑
k=0

�g�uk���uk− ūk��2<+��

Thus, from (25)

lim
k→�

tkxk− x̃k= lim
k→�

yk− ȳk=0� (27)

We consider the two possible cases. Firstly, suppose that

limsup
k→�

tk >0�

From (29) we have that

liminf
k→�

xk− x̃k= lim
k→�

yk− ȳk=0�

Thus, from (15)
liminf
k→�

rk=0�

Since f and the projection operator PY are continuous, taking limit along the
subsequence, it follows from (14) that

f �x̃�−A�ỹ=0�

and
ỹ=PY �ỹ−�Ax̃−a���

which mean that ũ is a solution of VI(F�'). Since u∗ is an arbitrary solution, we
can just take u∗= ũ in the above analysis and

uk+1− ũ�uk− ũ�
Using the same argument as given in [25], one can show easily that the whole
sequence 
uk converges to ũ, a solution of VI(F�'�.
Now, we consider the other possible case that

lim
k→�

tk=0�

We will show that in this case, xk− x̃k also tends to 0. Suppose that
xkl− x̃kl>d>0

for an infinite subsequence 
kl, and (without loss of generality) that 
x
kl and 
x̃kl 

are convergent subsequences. By the choice of tk weknow that (16)was not satisfied
formk−1. That is,

�f �xk+"mk−1�x̃k−xk��−A�yk����xk− x̃k�<*�1−��+kxk− x̃k2�
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which means, together with (21), that (for k large enough such that mk>1)

�1−��+kxk− x̃k2+�f �xk+"mk−1�x̃k−xk��−
f �xk����xk− x̃k�<*�1−��+kxk− x̃k2� (28)

Then, taking limit along the subsequence 
kl and using the continuity of f again,
we have

�1−��d2�*�1−��d2�
Since *∈�0�1�, we have that limk→�xk− x̃k=0. By a similar analysis as
the first case, we can show that ũ=�x̃�ỹ� is a solution of VI(F�'� and the whole
sequence 
uk converges to ũ, a solution of VI(F�'�. This completes the proof.

�

5. Numerical Results

To test the ability of the proposed algorithm, in this section, we implement it in
Matlab to solve variational inequality problems with linear constraints. The ex-
amples used here are taken from the test problems of Taji, Fukushima and Ibaraki
[27], which are modifications of the test problems of Marcotte and Dussault [23].
The constraint set S and the mapping f are taken respectively as

S=S2=
{
x∈R5

∣∣∣ 5∑
i=1

xi�10� xi�0� i=1�2�··· �5
}

and
f �x�=Mx+4C�x�+q�

whereM is a 5×5 asymmetric positive definite matrix and Ci�x�=arctan�xi−2�,
i=1�2�··· �5. The parameter 4 is used to vary the degree of asymmetry and
nonlinearity. The data of this example are given as follows.

f �x�=




0�726 −0�949 0�266 −1�193 −0�504
1�645 0�678 0�333 −0�217 −1�443
−1�016 −0�225 0�769 0�934 1�007
1�063 0�567 −1�144 0�550 −0�548
−0�259 1�453 −1�073 0�509 1�026







x1
x2
x3
x4
x5




+4




arctan�x1−2�
arctan�x2−2�
arctan�x3−2�
arctan�x4−2�
arctan�x5−2�


+




5�308
0�008
−0�938
1�024
−1�312


�

Thus,
B=�1�1�1�1�1�� and b=10�
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Table 1. Numerical results for 4=10

Starting pint Method Num. of Iter. CPU(sec.) xk−x∗
(25,0,0,0,0) NDM 27 0.11 1�34×10−7

GCNM 7 0.50 4�58×10−7

(10,0,10,0,10) NDM 29 0.16 2�55×10−7

GCNM 6 0.44 1�16×10−7

(10,0,0,0,0) NDM 25 0.11 7�73×10−7

GCNM 7 0.49 4�56×10−7

(0,2.5,2.5,2.5,2.5) NDM 21 0.06 2�93×10−7

GCNM 6 0.44 1�01×10−7

(0,0,0,0,0) NDM 19 0.06 1�85×10−7

GCNM 7 0.55 2�54×10−7

(1,1,1,1,1) NDM 22 0.06 5�73×10−7

GCNM 5 0.28 9�48×10−7

In our formulation (12)–(13),

A=




1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



� a=




10
0
0
0
0
0



� and Y =R6

+�

The problem has a unique solution x∗=�2�2�2�2�2�� and the Lagrange mul-
tiplier is y∗=�2�0�0�0�0�0��. Since for any given positive parameter 7>0,
VI(F�') is equivalent to VI(7F�'), we scale the mapping F by a factor 7=0�15.
At each iteration, we choose Gk=&f�xk� and use the function inv.m from

Matlab to find the inverse matrix of Gk++kI . In this sense, the subproblem (14)
is solved exactly and �=0. The other parameters used in the algorithm are set as
*=0�95, "=0�6 and +k≡2�5 for all k. The stop parameter is set to be )=10−6�

For comparison, we also code the globally convergent Newton method (GCNM) of
Taji, Fukushima and Ibaraki [27].We use the quadratic-program solver quadprog.m
from the Matlab optimization toolbox to perform the projection to the feasible
set S. We rewrite the subproblem in [27] as a linear complementarity problem
(LCP) and solve it by Lemke’s complementarity pivoting method [5], which finds a
solution of LCP in a finite number of steps. The parameters used in their algorithm
are set the same as those in [27].
Table 5.1 and 5.2 report the computational results for 4=10 and 20, respect-

ively. For simplicity, we denote the proposed method by NDM.
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Table 2. Numerical results for 4=20

Starting pint Method Num. of Iter. CPU(sec.) xk−x∗
(25,0,0,0,0) NDM 39 0.16 7�17×10−7

GCNM 7 0.55 4�58×10−7

(10,0,10,0,10) NDM 41 0.22 8�12×10−7

GCNM 6 0.54 1�16×10−7

(10,0,0,0,0) NDM 36 0.16 5�75×10−7

GCNM 7 0.48 9�74×10−7

(0,2.5,2.5,2.5,2.5) NDM 31 0.11 6�86×10−7

GCNM 6 0.45 6�31×10−7

(0,0,0,0,0) NDM 34 0.11 5�71×10−7

GCNM 7 0.50 8�27×10−7

(1,1,1,1,1) NDM 32 0.11 6�39×10−7

GCNM 5 0.33 6�58×10−7

The results in Table 5.1 and 5.2 indicate that the new decomposition algorithm
is quite efficient. Though the iterative number is larger than Newton-type method
[27], the total CPU time is smaller. Especially, the computational cost at each iter-
ation is much smaller, since, at each iteration, the Newton-type method [27] needs
to make some projections to the feasible set S, which is more difficult than making
projections to the nonnegative orthant of Rn+m and, one needs to solve a linear
variational inequality problem at each iteration, which is also time consuming from
the computational point of view.
The same problem with 4=10 was also considered in [28]. At each iteration,

their algorithm solves a system of nonlinear equations with the structure as (6), and
this subproblem has to been solved exactly. Additional to this, one has also to solve
a linear variational inequality problem (5) to get yk. Though this problem can be
solved by the standard Lemke Algorithm [5], it is still time consuming, see Table
1 in [28].
To show the advantage of this decomposition method for large scale problems,

we implement it to a set of spatial price equilibrium problems. The details of these
problems follow from [22, 12], as in the following:

min
∑m

i=1

∑n
j=1

(
cijxij+ 1

2hijx
2
ij

)
�

s.t.
∑n

j=1xij=si� i=1�����m�∑m
i=1xij=dj� j=1�����n�

xij�0�

where
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Table 3. Number of iterations for different scale and precisions.

m n mn )=0�1 )=10−2 )=10−3 )=10−4

5 5 25 6 14 71 92
5 10 50 18 84 132 173
5 20 100 13 25 96 125
10 10 100 9 31 151 203
10 20 200 9 23 160 194
20 30 600 14 36 170 470
30 40 1200 17 41 210 376
40 50 2000 20 63 271 767
50 60 3000 28 57 514 774

– si = the supply amount on the ith supply market, i = 1�����m, and
– dj = the demand amount on the jth demand market, j = 1�����n.

We use the same cost function as in He and Zhou [22]:

cij ∈�0�100� and hij ∈�0�005�0�01��

The parameters si and dj are generated randomly in �0�100� for all i=1�����m
and j=1�����n. We set Gk≡H and +≡15 and the other parameters are set as
the first example. Thus, the algorithm avoids solving the system of linear equations
and each iteration is very simple to evaluate. The calculations were started with
u0 generated randomly in �0�100� and stopped for some prescribed )>0. The
computational results are given in Table 5.3 for some m and n.
The results in Table 5.3 show that the required iterative numbers are relatively

small as compared with the size of problems. As this decomposition method only
requires function evaluations per iteration, it is attractive from a computational
point of view.

6. Concluding remarks

In this paper, we proposed a new decomposition algorithm for solving variational
inequality problems with linear equality constraints or inequality constraints in
a uniform framework. At each iteration, the algorithm solves a system of linear
equations with respect to x, the primal variable, and then performs a line search
step to get a suitable step size. Furthermore, we allow to solve the subproblem
approximately with a constructive accuracy criterion. The algorithm is thus well
comparable to the original decomposition algorithms, which solve a series of vari-
ational inequality problems, a class of problems that are structurally much more
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difficult to solve than system of equations. The proposed algorithm is also well
comparable to [16], which solves VI(f �S1) and VI(f �S2) by solving a series of
system of nonlinear equations, and [28], which solves this class of variational
inequality problems by solving a series of system of nonlinear equations, as well
as a series of linear variational inequality problems.
Note that if we take Gk≡G and +k≡+, then at each iteration, the algorithm

will avoid solving the system of linear equations, and the cost at each iteration is
small as those in [12, 13, 14, 22]. However, this will increase the total iterative
number and the line search steps. Therefore, their is a trade-off between the cost of
solving the system of linear equations and the total cost of the algorithm.
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